Hvordan kan forskningen bidra til å gjøre havvind konkurransedyktig på pris?

Kristin Guldbbrandsen Frøysa, CMR og UiB
Direktør Norwegian Centre for Offshore Wind Energy (NORCOWE)
Kristin@cmr.no

Takk til
Finn Gunnar Nielsen, UiB
Joachim Reuder, UiB
John Dalsgaard Sørensen, AAU
Masoud Asgarpour, AAU
for bidrag
What is the our key challenge?

- Levelized cost of electricity (LCOE):

\[
LCOE = \frac{\sum_{t=1}^{n} I_t + M_t}{\sum_{t=1}^{n} (1+r)^t} \frac{E_t}{\sum_{t=1}^{n} (1+r)^t}
\]

- Year number
- n: Lifetime of project (years)
- \(I_t\): Investments
- \(M_t\): O&M costs
- \(E_t\): Energy produced
- \(r\): Discount rate

What are the most important terms?
Illustration of sensitivities

- Base case:
 - $I_1 = 32\,000\,\text{kr/kW}$
 - $I_n = 3\,200\,\text{kr/kW}$
 - $M_t = 0.16\,\text{kr/kWh}$
 - $r = 8\%$
 - $N = 20$
 - Cap factor: 0.4
 - LCOE = 1.04 kr/kWh
Improve production. An effort across scales and disciplines.

<table>
<thead>
<tr>
<th>Scale</th>
<th>Time</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mesoscale</td>
<td>Days - Hours</td>
<td>10000 - 10 km</td>
</tr>
<tr>
<td>Park scale</td>
<td>20 min - 20 sec</td>
<td>10 - 1 km</td>
</tr>
<tr>
<td>Rotor scale</td>
<td>10 - 2 sec</td>
<td>200 - 50m</td>
</tr>
<tr>
<td>Blade scale</td>
<td>0.5 - 0.01 sec</td>
<td>5 - .5m</td>
</tr>
</tbody>
</table>

Factor $O(20 \times E06)$ on time and length scale
Met-ocean conditions important over wind farm life cycle

MABL (Marine Atmospheric Boundary Layer)
- planning phase: wind resource assessment; design criteria for structural loads (e.g. occurrence of extreme winds)
- construction phase: weather windows favorable for marine operations (e.g. heavy lift operations)
- operation phase:
 - actual flow conditions (wind speed, turbulence intensity)
 - accessibility for O&M

OML (Oceanic mixed layer)
- planning phase: design criteria for structural loads and excitation of movements (e.g. extreme waves)
- construction and operation phase: max. wave height for marine operations and WT accessibility; static and dynamic loads by currents, waves and wave breaking
NORCOWE campaign - WINTWEX-W wakes behind a turbine

Wind speed

Turbulence intensity

Instantaneous

10 min avg.

Geofysisk Institutt.

J. Reuder, Geophysical Institute, University of Bergen

NORCOWE campaigns – OBLEX-F1

FINO1, German Bight, May 2015 – September 2016 (atmospheric part); May 2015 – October 2015 (oceanic part)
OBLO infrastructure
OBLO (Offshore Boundary Layer Observatory) (http://oblo.uib.no/)
NFR infrastructure project, funded with ca. 4 M€
advanced mobile met ocean instrumentation for flexible deployments
The reference wind farm – a platform for testing tools

- Optimum Wind farm design and operation
- Rules for farm design and operation
- Site wind and wave climatologies
- Levelised cost of energy
Baseline O&M Model

Corrective maintenance policy based partly on *
Failures in 3 categories and regular annual service:

<table>
<thead>
<tr>
<th></th>
<th>Minor Repair</th>
<th>Major Repair</th>
<th>Major Replacement</th>
<th>Annual Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>6</td>
<td>1</td>
<td>0.1</td>
<td>1</td>
</tr>
<tr>
<td>Vessel</td>
<td>Crew transfer</td>
<td>Crew transfer</td>
<td>Heavy lift vessel</td>
<td>Heavy lift vessel</td>
</tr>
<tr>
<td></td>
<td>vessel</td>
<td>vessel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. Technicians</td>
<td>3</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Duration</td>
<td>6 [h]</td>
<td>18 [h]</td>
<td>48 [h]</td>
<td>35 [h]</td>
</tr>
<tr>
<td>Cost</td>
<td>61,200 [€]</td>
<td>530,000 [€]</td>
<td>3,000,000 [€]</td>
<td>140,000 [€]</td>
</tr>
</tbody>
</table>

Iain Dinwoodie, Ole-Erik V. Endrerud, Matthias Hofmann, Rebecca Martin, Iver Bakken Sperstad. 2014. “Reference cases for verification of offshore operation and maintenance simulation models for offshore wind farms”.

Spare parts available in stock
24 hired technicians working 12 h shifts a day
Major replacements carried out in two 12 h shifts
Failures generated from exponential distributions and lead to turbine shutdown
Annual service carried out at start of each June

NOrRCOWE WP meeting, Stavenger, 6-8 May 2015
Baseline O&M Model

2 hired work boats
HLV chartered for major replacements

<table>
<thead>
<tr>
<th></th>
<th>Crew Transfer Vessel (CTV)</th>
<th>Heavy-Lift Vessel (HLV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Limiting weather criteria</td>
<td>Wave</td>
<td>Wind / Wave</td>
</tr>
<tr>
<td></td>
<td>1.5 [m]</td>
<td>20 [m/s] / 2[m]</td>
</tr>
<tr>
<td>Mobilisation time</td>
<td>0</td>
<td>40 [days]</td>
</tr>
<tr>
<td>Mobilisation cost</td>
<td>0</td>
<td>680.000 [€]</td>
</tr>
<tr>
<td>Speed</td>
<td>20 [knots]</td>
<td>11 [knots]</td>
</tr>
<tr>
<td>Technician capacity</td>
<td>12</td>
<td>100</td>
</tr>
<tr>
<td>Day rate</td>
<td>3200 [€]</td>
<td>320000 [€]</td>
</tr>
<tr>
<td>Maximum offshore time</td>
<td>1 shift</td>
<td>Unlimited</td>
</tr>
</tbody>
</table>

Table 2: Vessel input
Baseline O&M Results

<table>
<thead>
<tr>
<th>Component</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnkey</td>
<td>3300 [€/kW]</td>
</tr>
<tr>
<td>OPEX</td>
<td>0.022 [€/kW]</td>
</tr>
<tr>
<td>AEP</td>
<td>3981.3 [GWh]</td>
</tr>
<tr>
<td>(r_c)</td>
<td>8 [%]</td>
</tr>
<tr>
<td>(r_p)</td>
<td>6 [%]</td>
</tr>
<tr>
<td>(T)</td>
<td>20 [years]</td>
</tr>
</tbody>
</table>

Table 3: LCoE input

\[
LCoE = \frac{\text{Turnkey} + \frac{1 - (1 + r_c)^{-T}}{r_c} \cdot \text{OPEX}}{\frac{1 - (1 + r_p)^{-T}}{r_p} \cdot \text{AEP} \cdot \text{availability}}
\]

\[LCoE = 0.098 \, [\text{€/kWh}]\]
Calendar

<table>
<thead>
<tr>
<th>Date</th>
<th>Event</th>
<th>Time</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>14.02.2017 12:00–13:00</td>
<td>Finn Gunnar Nielsen: Wave Energy - The basic principles</td>
<td>12:00–13:00</td>
<td>Auditorium 5, Realfagsbygget</td>
</tr>
<tr>
<td>21 FEB</td>
<td>Ignacio Herrera Anchustegui: Role of the state in implementing renewable energy in public procurement (Presentation)</td>
<td>12:00–12:30</td>
<td>Auditorium 5, Realfagsbygget</td>
</tr>
<tr>
<td>21 FEB</td>
<td>Finn Gunnar Nielsen: Electrification of Norwegian cars with offshore wind (Presentation)</td>
<td>12:30–13:00</td>
<td>Auditorium 5, Realfagsbygget</td>
</tr>
<tr>
<td>28 FEB</td>
<td>John Carter: Designing a course on Wave Energy (Presentation)</td>
<td>12:00–13:00</td>
<td></td>
</tr>
<tr>
<td>09 MAR</td>
<td>Emerging technologies and their impact on the society (Seminar)</td>
<td>09:15–14:00</td>
<td>Auditorium 2, Faculty of Law, Magnus Lagabøtes plass 1</td>
</tr>
</tbody>
</table>
SMI Stavanger
The yearly conference Science Meets Industry Stavanger will take place on March 29th
read more >>

Measuring the wind
How the use of lidars can reduce electricity prices
read more >>

Havvind er redningen
Hvordan nå klimamålene for 2030
read more >>

OBLEX-F1
An overview of the one-year NORCOWE measurement campaign around FINO1
read more >>

NORCOWE tools